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1 Overview

1.1 Growth of Cloud Computing and Privacy Issues

Advancements in cloud computing are transforming how data is hosted, shared, and processed. The
rapid adoption of cloud technologies has created an opportunity to connect different data silos. As
shown in Figure 1, the evolution of computing started with the adoption of centralized mainframes
by big businesses for critical applications (e.g., transaction processing, census, etc.) in the 1950s.
In the 1980s, with technological advances, PCs became more portable, allowing computing mobility
and improved productivity. Moving to the 2000s, a significant shift has been seen from personal
computing to mobile and cloud computing, where the latter enabled businesses to cost-effectively
utilize elastic computing resources on a pay-as-you-go basis.

1950’s
Mainframe

1980’s
Personal Computer

2000’s
Mobile Computing

2000’s
Cloud Computing

Late 2010’s
Privacy-preserving
Computing

Figure 1: The progression from mainframe to privacy-preserving computing

By leveraging the flexibility and scalability of cloud computing, enterprises, small business, as well
as, startups can easily increase their productivity and streamline the deployment of innovative
products.

Based on Gartner’s report, worldwide end-user spending on cloud computing is expected to grow
20.7% in 2023 to a total of $591.8 billion, up from $490.3 billion in 2022, which is nearly $600
billion [1]. There is no doubt that industries (e.g., in the areas of healthcare, finances, internet of
things, etc.) are moving towards the cloud-based computing paradigm.

However, security and privacy are becoming one of the major challenges for industries in utiliz-
ing scalable and cost-effective cloud-computing technologies. For example, until March 2015, the
National Institutes of Health (NIH) did not allow controlled-access genomic data to be uploaded
to the public cloud due to privacy concerns. The policy has changed, in response to “the advances
made in security protocols” and “the expansion in the volume and complexity of the genomic data”.
However, the new policy lays the liability for data disclosure entirely on the cloud user side. It
was clearly stated in the “NIH Security Best Practices for Controlled-Access Data Submit to the
NIH Genomic Data Sharing (GDS) Policy” that cloud users, not the cloud service provider, are
responsible for ensuring the security of human genomic data [2]. In the absence of provable and
easy-to-use protection methods, this requirement actually deters the use of the cloud. Security and
privacy technologies have advanced significantly in the past few years, which increases the feasibility

2



Privacy-Preserving Health and Genomics Data Marketplace Powered by AI and Blockchain

of privacy-preserving computing. Such a computing paradigm will enable data availability and
usability, as well as change the way data is shared in all industries.

Extreme caution must be exercised over data contributorship, privacy and protection; different data
silos need to be connected into a seamless and interoperable fabric; proper incentive structure must
be introduced for data contributors and data miners built on a blockchain-based infrastructure;
as well as privacy-preserving and artificial intelligence(AI)-based data analytic computation must
enable collective statistical learning without compromising individual privacy. Figure 2 shows three
recent trends driving the need for the next-generation of health applications.

I. Individual Ownership of Data
• Individual / Decentralized Ownership of Data is the cornerstone for a fair 

and functioning decentralized marketplace.
• Smart-contract transactions encompass individual ownership of data 

while incentivize data owners to share and monetize their data

II. Data Privacy
• Privacy-preserving Computation based on developments in Trusted 

Execution Environment (TEE) and advanced cryptographic technologies 
allow collective AI and statistical learning over different data silos without 
compromising individual privacy.

III. Advancements in AI/NLP Technologies
• Natural Language Processing and other AI technologies have exponen-

tially expanded into health-related applications in the past decade

Figure 2: Healthcare: confluence of three major trends

1.2 Challenge of Managing Personal Genomic and Health Data

The rapid adoption of electronic health records (EHR) has enabled the meaningful use of healthcare
data for advancing biomedical research. Seminal advancement in genomic data generation over the
past decade has also impacted biomedical science and related scientific studies. The genesis in data
accumulation has made scientific studies on multiple types of medical genomics more realistic [3].
Large and varied biomedical datasets now help researchers understand the relation between our
genome codes and our health [4]. In addition, many direct-to-consumer (DTC) genetic testing
companies (e.g., 23andMe, Ancestry.com, etc.) have also contributed to the expansion of the market
for personal genetic data [5]. According to industry estimates, more than 26 million individuals
have had their DNA analyzed by one of DTC genetic testing providers. For example, Ancestry.com
and 23andMe have tested more than 14 million and 9 million people respectively, by the end of
2019 [6]. Nowadays, around 1 in 25 American adults have access to personal genetic data. These
data will become important resources of data-driven approaches in biomedical science, in particular
for precision medicine [7].

Given a large amount of personal genomic data, efficient sharing, proper storage, and rapid pro-
cessing become critical to achieving these goals. However, various challenges stand in the way
of managing, sharing, and processing large-scale genomic data and the associated personal health
information. One challenge is the lack of a health data market ecosystem that can democratize
data sharing and analysis among data contributors, data miners, and healthcare providers in a
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trustworthy manner. As a result, health and genomic data are typically handled in a centralized
framework (e.g., dominated by big entities like EHR providers). Individuals own their data but
have limited options to choose how their data can be shared and analyzed while appropriately
protected and compensated after giving consent. On the other hand, data miners (pharmaceutical
companies, research institutions, etc.) usually need to access genomic and healthcare from a large
cohort to generate hypotheses and models for developing novel drugs and treatments for diseases.
We believe there is a tremendous opportunity and need to develop the first decentralized ecosystem
for sharing and analyzing genomic and health data securely and with privacy-preserving primitives.

2 Lavita Platform - A Decentralized Health Data Marketplace

2.1 Leveraging blockchain, AI and privacy-preserving technologies

Lavita platform brings together three technologies, namely distributed blockchain infrastructure,
AI, and privacy-preserving computing to implement a fully decentralized data marketplace.

1. Blockchain and smart contracts enable a marketplace that incentivizes data contributors to
share their data while protecting their ownership of data. The use of blockchain technology
removes the middlemen in the conventional data marketplace, lowers the cost of data cu-
ration for medical research, and introduces an incentive mechanism that encourages users’
participation to contribute their private data and receive rewards.

Lavita platform incentivizes individuals and healthcare institutions to share healthcare data,
and get rewarded with a new TNT-20 “LAVITA” token, built on the Theta blockchain.
This token will be utilized not only for users sharing data but also for offering storage and
computation capabilities. This will be enabled by the Theta Edge Network, the decentral-
ized blockchain infrastructure providing secure distributed data storage (Theta EdgeStore),
computation, and more. More details of these components are described in Section 3.

2. AI-powered tools ensure that data miners, institutions, and data contributors can find quality
data on Lavita and build novel applications on this platform. These tools are implemented by
unique techniques for data validation and include a Semantic Search Engine with in-domain
knowledge about healthcare and biomedicine. The Semantic Search Engine aims to not only
find keywords but determine the intent and contextual meaning of search queries by users
and helps them achieve the goal of finding the right information at the right time.

AI-aided disease prediction has undergone significant development in recent years by improv-
ing the diagnosis approaches, supporting clinical decisions, and reducing healthcare costs.
Recently, machine learning and deep learning approaches have been applied to clinical pre-
dictive modeling with numerous successes [8]. The primary dataset for predictive modeling
in the clinical area today is in form of Electronic Health Records (EHR), which offer rich and
well-structured information that reflects the disease progression of each patient and is one of
the most valuable resources for healthcare analysis. Lavita platform will be able to utilize
EHR primary datasets and various other healthcare-related data types (e.g., genomic, survey,
clinical) and data modalities (e.g., text, image, audio) combined with AI-powered models and
algorithms, including natural language processing (NLP) and natural language understanding
(NLU) methods, to build applications to address different needs for individuals and healthcare
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institutions. These applications include but are not limited to: accelerating the development
of novel treatments for diseases, detecting diseases’ symptoms in patients early on, inform-
ing patients/individuals with insightful genetic information, research, and the latest findings
based on their clinical needs in the platform, or helping clinical trials succeed by connecting
eligible individuals with these trials. As part of building AI-powered applications, Lavita
leverages the shared de-identified data for training and fine-tuning large language models
(LLMs) or various other foundation models [9] without compromising user privacy, confiden-
tiality, or data anonymity. LLMs and foundation models, enabled by transfer learning and
scaled and powered by better computation, larger and better quality data for training, and
novel architectures such as the Transformer [10], have demonstrated promising performance
in many tasks including image classification, question answering, document summarization,
translating human languages, automatic code generation, and beyond. These models can
unlock massive potential in advancing research in biomedicine and address many downstream
tasks when pretrained on domain-related corpora (e.g., medicine or science) and fine-tuned
on smaller high-quality in-domain datasets (e.g., clinical). Lavita enables the development of
powerful AI applications in the biomedical domain by facilitating the creation of LLMs and
foundation models and providing high-quality data at scale validated by AI-powered tools.

3. Privacy-preserving computing ensures end user data remains private during the computation
phase of statistical machine learning. The key to privacy-preserving computing lies in its
power to enable data sharing and analysis among different sub-systems and entities without
exposing data to any unauthorized third-party or system.

The Lavita platform ensures full privacy-preserving computing by implementing a Trusted
Execution Environment (TEE) such as Intel Software Guard Extensions (SGX), which is a
hardware-based memory encryption system that isolates specific application code and data
in memory. As an example, Intel SGX allows user-level code to allocate private regions of
memory, known as enclaves, which are designed to be protected from processes running at
higher privilege levels. As such, Intel SGX offers a granular level of control and protection
to implement privacy. Intel SGX has been proven effective in the context of genomics and
health data, as reported by numerous peer-reviewed research publications, including some
publications co-authored by Lavita team members and advisors [11, 12, 13, 14].

2.2 Reward for Healthcare Data Contributors and User Workflow

Centralized third-party genetic data companies are getting a high return on the data they own. A
preeminent example is 23andMe, which owns the genetic data as well as over 1.5 billion answers to
survey questions from over 5 million customers, among which more than 80% consent to research and
recontact. These survey questions cover broad aspects of customers’ health conditions, including
their heart health, inflammation, metabolic, optimal, nutrition, stress management, and family
history of health, which can help pharmaceutical companies such as GSK to shift to a ”genetics-
driven” and ”genetics-supported” R&D portfolio, as it has been shown that the drugs designed to
target a specific biological mechanism with a strong genetic/biochemical rationale have a twofold
higher probability of success in comparison with those without such rationale.

Lavita’s decentralized revenue-sharing model is able to retrieve every single data source and directly
pay the profit of data usage back to each individual who contributes his/her data. In addition to
the free module on-chain services, LAVITA tokens can also be used to purchase the products like
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medical insurance once such a plan is plugged in, described more in Section 3.

The user workflow of the Lavita platform is shown in Figure 3, beginning with contributing health-
care data through a fully secure, encrypted mobile app, to aggregating and analyzing data privately
and earning rewards in the form of Lavita tokens.

Contribute and manage 
personal health data

Aggregated, encrypted, 
data used in studies

Earn digital token 
(cryptocurrency)

Use mobile app to create 
“encrypted” profile

Figure 3: User workflow in the Lavita platform

By utilizing privacy-preserving computation, sensitive data can be protected and controlled during
the entire data analysis pipeline which was previously impossible. Such a computing paradigm will
prompt data availability and usability, as well as, change the way data is shared among stakehold-
ers. The Lavita platform implements a decentralized, peer-to-peer data marketplace connecting
individuals who share private data with the data miners who perform biomedical research.

As shown in Figure 4, the overall process begins with data contributors contributing their own
private health data and getting rewarded in LAVITA tokens from data miners. Depending on the
type and quality of information that data miners (e.g., pharmaceutical and research labs) utilize,
the incentive mechanism will value data differently. See Section 3.3 for more details. These rewards
can also be used by individuals to pay for health services to healthcare institutions (e.g., annual
health checkups).

Health Provider
(eg Hospitals)

Data Miner
(eg Pharma Lab)

Compensate 
with Tokens

Contribute 
Private Data

Pay Health 
Services with 

Tokens

Offer Health 
Services

Automated 
Biomedical 

Research 
with AI

Data Contributor
(eg Individuals)

Figure 4: Lavita platform - a decentralized data marketplace
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2.3 Five Key Components

The Lavita platform (see Figure 5) consists of five integral components: 1) Blockchain, 2) Secure
Data Storage, 3) Secure Computation (e.g., secure hardware, multi-party computation (MPC) [15,
16, 17, 18], homomorphic encryption (HE) [19, 20, 21, 22], zero-knowledge proof (ZKP) [23], and
differential privacy), 4) AI-supported Research & Validation Applications (e.g., research engine,
data validation tool), and 5) Secure Key Management Services (KMS).

05

Decentralized 
Blockchain

Secure Data 
Storage

Secure
Computing

AI-powered
Data Research

Secure Key Management Services (KMS)

Theta Subchain-powered Smart Contracts

Figure 5: Technological components in the Lavita platform

These five modules enable a trusted, fair marketplace for data contributors and data miners to ex-
change health data as digital assets. Smart contracts will record transactions on the blockchain upon
completing computation and ensure that results are immutable, verifiable, and privacy-preserving.
Secure computation is conducted off-chain, while the verification is achieved through distribut-
ing trust across multiple parties, instead of relying on a centralized service provider that every
participant has to trust.

2.3.1 Decentralized blockchain Powered by Theta Subchain

As shown in Figure 6, all Lavita systems are powered by smart contracts running on a customized
Theta Subchain. This custom health data subchain enables full horizontal scalability, without
sacrificing privacy and security. Additionally, Lavita plans to fully leverage Theta’s decentralized
edge network to support two main capabilities: 1) store private healthcare information through
Theta EdgeStore, and 2) support secure Lavita workloads. The new TNT-20 token, LAVITA
token, will be created on the new subchain to increase the rate of adoption and liquidity of the
marketplace through healthcare data contribution, storage, and computation.
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Theta Subchain - Customized TNT-20 Token

Theta EdgeStore

Secure Data Storage
Provider

End Users

Data
Miners

Users with Secure Devices

Data
Contributors

Theta Edge Nodes with Intel SGX

Secure Computation
Provider

Secure Runtime
Application

Figure 6: Tokenized data marketplace in Lavita ecosystem

Data Miners are research institutions, clinical institutions, or pharmaceutical companies, whose
biomedical research and development require personal genomic data. Data consumers have the
incentive to compensate data contributors for sharing their high-quality data. Within the Lavita
framework, such compensation is done through the use of smart contracts and blockchain technol-
ogy.

Data contributors are individuals or organizations such as a biobank or a direct-to-consumer
company who are willing to share their genomic data. The data contributor will receive compen-
sation for the data in the form of tokens distributed from the smart contracts.

Secure data storage providers are entities or individuals, who provide decentralized data storage
infrastructure via the Theta EdgeStore, for safeguarding the encrypted biomedical data and for
offering reliable and scalable access to data upon request.

Secure computation providers are Theta Edge Node operators that run the server-based TEE
hardware to provide secure and high-performance biomedical data analysis and computation ser-
vices.

Secure runtime app providers develop secure runtime applications for data miners to be ex-
ecuted by a secure computation provider, where the secure runtime app can also be hosted on
the secure data storage. These apps include intelligent data analytics and direct-to-consumer ap-
plications such as deep learning, regression models, association test pipeline, disease risk analysis
applications, and so on.

2.3.2 Secure Data Storage Powered by Theta EdgeStore

In the Lavita platform, the data storage service will be supported by a decentralized data storage
infrastructure powered by Theta EdgeStore. It provides a high-throughput content-addressed block
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storage model in order to achieve better robustness to efficiently handle large-scale genome data
from different sources. As shown in Figure 7, data encryption technologies will be adopted for
safeguarding biomedical data.

Theta Edge Network

Secure Data Storage
(Theta Edgestore)

Secure Computing
(Intel SGX)

Encrypted
Data

Theta Metachain

Users / Devices

Data UploadData Upload

Users with secure devices

Figure 7: Overview of the secure storage framework in Lavita platform

2.3.3 Secure Computation Leveraging TEE and Theta Edge Network

Trusted execution environment (TEE) provides an isolated memory and computation space within
hardware (e.g., Intel sgx enclave), in which sensitive data can be analyzed efficiently and se-
curely. There exists many TEE products in the market, e.g. ARM Trustzone, AMD Secure En-
crypted Virtualization and Intel SGX. Upon launch, Lavita will implement Intel server-based SGX
(TEE) [13, 24, 12] as our computational node to maximize the security of application code and
data, protecting against runtime disclosure or modification. The Secure Computation Workflow is
shown in Figure 8.

MATCH Wallet 0X123456789...Wallet 0X123456789...

Users / Devices Edge Nodes Edge Nodes with SGX

SAFE SAFE SAFE

Figure 8: Lavita secure computation workflow

9



Privacy-Preserving Health and Genomics Data Marketplace Powered by AI and Blockchain

More specifically, the Intel Software Guard Extensions (SGX), a hardware-enabled TEE, can be
installed for the operation to achieve secure and efficient computation as shown in Figure 9.

Encrypt Secrets Receive Secrets

Receive Secrets

Remote Attestation

Decrypt Secrets

Verify Secrets

Decrypt Secrets

Secure Computation

Encrypt Secrets

Encrypted Secrets

Encrypted Secrets

Secure Enclave

Secure computing node

Data Miner Secure Computing Provider

Figure 9: Overview of SGX framework, consisting of data contributors, cloud service provider
(CSP), and secure enclaves

Intel SGX-enabled CPU provides the infrastructure for privacy-preserving computation. SGX
enclaves are isolated areas of memory called EPC (Enclave Page Cashe) where sensitive data are
protected from malicious attacks. The code and data in EPC are reachable only within the secure
enclave or authorized parties. Using the Intel SGX platform firmware and software, the Lavita
platform reserves EPC for this safe environment.

When applications run inside an enclave, the CPU instantly encrypts it and stores the key. Since
the key is inside the CPU, an attacker even with OS root privilege cannot obtain it by inspecting
the system memory. Enclaves are extremely safe environments for working with data. What makes
enclaves secure is the automatic hardware encryption. The SGX technology uses the CPU to
encrypt the information and store the key inside it. Hence, an external party cannot acquire the
key and compromise the data. This means that not even the cloud provider can gain access.

Data contributors in the Lavita platform will send their encrypted genomic and healthcare data to
the secure computing infrastructure and obtain a hash value that uniquely identifies the data in the
Lavita ecosystem. During the secure computing phase, Theta EdgeStore can work directly with
Secure Computing Nodes through the identical hash value which is recorded on the blockchain by
the data contributor through a smart contract.

In the future, Lavita will evaluate additional distributed computation techniques that augment
TEE infrastructure including multi-party computation (MPC) [25, 26, 27, 28, 29, 30], homomorphic
encryption (HE) [31, 32, 33, 34], differential privacy (DP) [35, 36, 37, 38, 39, 40, 41, 42], and zero-
knowledge proof (ZKP), as described below:
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Multi-Party Computation (MPC) represents a collection of data privacy interactive
protocols (e.g. secret sharing, garbled circuit, GMW, etc) for computing some functions
(represented as circuits) between multiple parties. MPC protocols have the advantage
of being theoretically secure rather than relying on computational assumptions as long
as there is no collusion or even collusion ratio is under a given limit.

Homomorphic Encryption (HE) allows functions to be computed on ciphertexts
without decryption. Technically, any function that can be represented by a low-degree
polynomial with addition, subtraction, and multiplication can be supported by HE.

Differential Privacy (DP) offers theoretically quantifiable bounds of privacy on the
disclosure of sensitive data or results. A majority of the research work revolving around
DP and genomic data lies in the private dissemination of genome-wide association stud-
ies (GWAS) and Genomic Beacon Services [43].

Fusion of Secure Computation Technologies. Each secure computation technol-
ogy has its unique advantages and disadvantages. DP is exceptional for protecting an
individual’s private contributions within a dataset, but the added noises often prevent
fine-grained data analytics on personalized data. MPC and HE can perform addition
on encrypted data efficiently, but performing multiplications is very expensive in terms
of communication and computation overhead. TEE requires trusting the correctness of
the enclave code and the execution environments, but recently discovered vulnerabilities
had demonstrated potential risks that leak sensitive information.

Over time, the optimal strategy is to fuse these secure computation technologies together to miti-
gate the security and performance drawbacks of each technology. For example, TEE technologies
may suffer side-channel attacks [44], whereas HE requires a time-consuming noise reduction step
after every multiplication over ciphertexts. A longer term strategy is to develop a hybrid solution
to combine these two technologies such that straightforward computations can be performed ho-
momorphically within the protection of HE while the computation-intensive noise reduction step is
performed within TEE. Lavita’s further development plans include solutions with MPC protocols
to achieve information-theoretic security for protecting user-sensitive data.

2.3.4 Data Research and Validation

1. AI-Supported Data Research for Clinical Guidelines
Users will receive well-informed genetic information and analysis based on their clinical needs
in the platform. Data research applications will be supported on different types of data
including genomic, survey, clinical/EHR, and behavioral/longitudinal data.

With the use of a Semantic Search Engine powered by NLP and NLU, machines are able to
detect language patterns and identify relationships between words to understand what people
are researching for. Understanding a searcher’s intent and the meaning of words and phrases
in context to find the right content is the purpose of our Semantic Search Engine, in which
collected healthcare data (e.g., symptoms of diseases, clinical guidelines that users may follow
for urgent cases, etc.) will be leveraged on the Lavita platform, as shown in Figure 10.
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Storage / DB Clinical Analysis

Semantic Search
Text Mining Searcher

EdgeStore

Healthcare Data
Marketplace

NLP Indexer

Figure 10: Semantic Search Engine overview

2. AI-Powered Data Validation Tool
For the marketplace to be as competitive in the healthcare industry, it is crucial to have
a certain level of data quality. As the platform collects more and more data on the storage
infrastructure, analytics capabilities will get more sophisticated, therefore it is crucial to focus
more on data quality management for the platform. As the first step to maintain the accuracy
and own value of the project, four key dimensions of data quality assessment are defined as
follows: 1) Completeness, 2) Consistency, 3) Conformity, 4) Accuracy.

• Data Completeness refers to the meaning that datasets have no or a limited number of
missing values. In order to create values with quality data for individuals or healthcare-
related organizations, datasets should have all the necessary information to effectively
explore and share clinical analysis or guidelines with a certain level of confidence, which
is an important point for the Lavita platform.

• Consistency means data across all systems reflects the same information, so the data
has to be up to date periodically, to avoid offering faulty information to users.

• Conformity is where data needs to be in the same type, format, etc., to make data
more reliable, and easily accessible.

• Accuracy refers to the degree that information accurately reflects a fact or actual data.

In order to add more liquidity to the Lavita marketplace, one of the incentive mechanisms is
with the data quality to make sure that the more efforts individuals or data contributors put
into filling up the data survey or results, the better rewards they receive. It is enabled by the
AI-Powered Data Quality Tool, as illustrated in Figure 11.

Consistent Data

Missing Data

Inconsistent Data

Figure 11: Data quality tools ensure data consistency, conformity, and completeness
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2.3.5 Secure Key Management

In Lavita, a trusted execution environment (TEE) is used in the Secure Key Management Services
(secure KMS module to protect the security of all keys. Through per-application isolation based
on hardware supported encryption, the attack surfaces of the applications using in TEE are sig-
nificantly reduced. Clients (e.g., data contributors or data miners) can use TEE enabled secure
secure KMS to generate dynamic session keys to establish a secure channel in order to deliver their
encryption keys to the secure KMS database for future use (see Figure 12).

Data
Contributors

Secure
Computing
Node

Secure
Key
Management

Data
Miners

Secure
Storage

Master Key
Group

Figure 12: Overview of the secure Key Management Services

Secure KMS provides key hierarchy management to reduce the risks of key breaches. The key
hierarchy design allows different encryption keys to be assigned to different data. In the worst
case, the breach of a subset of the data will not result in a broad information leakage for the data
encrypted by the other keys. In this way, a higher level of security and flexibility is achieved for
the protection of keys and their corresponding encrypted data.

3 Token Utility

In order to increase the rate of user adoption in the Lavita ecosystem, the LAVITA token will be
created to incentivize data contribution, computation and storage as well as serve as the governance
token for the Lavita platform.

In Section 3.1, Figure 13 illustrates the token utility in the Lavita platform of the Data Contributors’
side. Data Contributors will earn LAVITA when they upload their own health data powered by
smart contracts running on a customized Theta Subchain, and edge nodes providing storage and
computation will also be rewarded.

3.1 Utility for Data Contributors

Data Contribution (➀−➁):
➀ Data Contributors contribute their data, private and on their device
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Data Contributors Lavita Platform

Edge Nodes with 
Computing Power 

Edge nodes with
Secure Data Storage

Earn LAVITA tokens

Data sent for secure

computation
6 Earn Lavita tokens

for secure storage

5 Encrypted Data sent to
secure data storage

1

2

3

4

Upload / Share Data

Earn LAVITA tokens

Earn LAVITA tokens

for Computation

Figure 13: Token utility of the Lavita marketplace (Data Contributors)

➁ Earn LAVITA tokens with two incentive mechanisms for measuring rewards as below:

• The concept of the ‘fair market pricing’ algorithm will identify the value of data such as
uniqueness, and the amount of tokens will be calculated to reflect the value of data fairly.

• The quality of data is also critical for the platform in order to make the marketplace more
reliable and competitive than other healthcare platforms. The amount of tokens will be
calculated based on the quality of data by an AI-supported data validation tool.

Secure Data Computation (➂−➄):
➂ Once the platform receives data from data contributors, it directly sends data to server-based
SGX nodes, for secure computation in an encrypted format.
➃ In return, the nodes will be rewarded with LAVITA tokens.
➄ Once the secure computation is processed, the encrypted data will be sent to secure data storage
provided by Edge Nodes.

Secure Storage for Data Results and Analysis (➅):
➅ Data results will be stored in Secure Data Storage, and Edge Node providers will be incentivized
with LAVITA tokens as rewards.

In Section 3.2, Figure 14 shows the token utility in the Lavita platform of the Data Miners’ side. It
illustrates that Data Miners need to use LAVITA tokens in order to get access to private healthcare
data for results and analysis.
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3.2 Utility for Data Miners

Figure 14: Token utility of the Lavita marketplace (Data Miners)

Data Exchange (➀−➁):
➀−➁ Data Miners that need access to private genomic or health related data from the Lavita
platform will purchase and use LAVITA tokens to gain access to data, analysis, and results.

3.3 Fair Market Pricing Algorithm

Fairness is a core principle of the Lavita marketplace. By giving the control back to the original
owners of the assets (data contributors, data verifiers, and data collectors), the platform allows
every stakeholder to capture the true value of its asset and thereby maximize the economic surplus.
The value of each asset is determined in a fair and decentralized protocol as follows:

Mutual Entropy: The study of rare genetic diseases will be used as an example to describe the
mechanism for valuing genomic data. It is important to distinguish between wide-scale genome
studies such as Genome-Wide Association Studies (GWAS) for a large population and common
diseases and genomic studies for rare diseases. GWAS are observational studies of a genome-wide
set of genetic variants in different individuals to see if any variant is associated with a trait. When
the population is large and the target trait is observed in a large subset of the population, GWAS
relies on a large number of participants to infer statistically significant associations. Thus, the
addition or deletion of any specific individual from the population may not dramatically change
the outcome of GWAS. On the other hand, when the study is about a rare disease, there are
very few individuals that may have the rare condition and thus adding or removing any of those
individuals would significantly affect the statistical power of the study. Because of this dynamic,
data from an individual with a rare disease is significantly more useful and valuable than a normal
individual.

A mathematical method known as mutual entropy is used to evaluate the incremental value that
an individual’s genome would add to the population if their genome information is included in the
study. The entropy of a random variable is a function that characterizes the unpredictability of
the random variable. For example, consider a random variable X representing the number that
comes up on a roulette wheel and a random variable Y representing the number that comes up on
a fair six-sided die. The entropy of X is greater than the entropy of Y because X can take values
from numbers 1 through 36, but Y can only take values from 1 through 6. X is essentially less
predictable than Y . If a random variable X takes on values in a set X = {x1, x2, ..., xn}, and is
defined by a probability distribution P (x), then the entropy of the random variable is defined as:

H(X) = −
∑
xϵX

P (x) logP (x)
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The entropy equation can be used to define Mutual Information between two variables. Mutual
information is a measure of the additional information known about one expression pattern when
given another. For example, the Mutual Information between variables A and B is defined as:

I(A,B) = H(A) −H(A|B)

where H(A) is the entropy of the variable A and H(A|B) is the conditional entropy of A given
B. Mutual information can be calculated by subtracting the entropy of the joint gene expression
patterns from the individual gene entropies.

I(A,B) = H(A) + H(B) −H(A,B)

Mutual information of zero means that the joint distribution of expression values holds no more
information than each of the individual sets considered separately. Higher mutual information
between two genes means that one gene is non-randomly associated with the other. Using Mutual
Information, any new user that submits their genomic and health information to the platform can
fairly price the value of their information, as related to the previously available information on
the platform. For example, if a study has already 499 participants, the value of the data that is
contributed by the 500th participant is calculated by the mutual entropy between the new genome
and each of the first 499 genomes and using the average value as the measure of the incremental
value. The new participants will receive higher rewards if their genomic data has higher incremental
value.

4 Lavita Open Platform with AI-Powered Dapps

The Lavita platform is an open AI infrastructure that powers distributed applications and inter-
actions among various stakeholders in the healthcare field and creates numerous opportunities for
organizations and individuals through health data management, exchange, and utilization. Some
of the Lavita platform’s initial applications are shown in Figure 15.

1 Genetic ID System 2 3 Secure Genomic
Comparison 4

Lavita Open Platform Applications

Clinical Trial Matching Ancestry Profiling

Figure 15: Some initial applications being enabled by Lavita platform

With the help of massive human genomic and healthcare data mining, a much broader opportunity
becomes available to biomedical and pharmaceutical researchers to develop targeted drugs and
devise novel precision medicine strategies. Lavita’s vision is to contribute to the promising clinical
research field with its open platform applications and support all kinds of data mining techniques,
including those based on machine learning and deep learning algorithms. Equipped with a rich set
of data, open-sourced AI algorithms could revolutionize biomedical discovery in the near future.
Lavita hopes to play a critical role in this process from data synthesis to new discoveries.
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On Lavita platform data contributors will be able to manage the sharing of their genomic and
clinical data without worrying about the potential for fraud or a privacy breach and financially
benefit from contributing their data to scientific research through a reward system. In addition,
customers can enjoy a healthier lifestyle with precision healthcare for disease prevention and medical
intervention based on on-chain services for medical care and medical insurance claims.

4.1 Genetic Identity

Genetic identity (Genetic ID) can provide basis for a universal identity system to enable users
securely and privately access various health services and applications in Lavita marketplace and
elsewhere. It is important to note the Genetic ID system neither stores nor reveals an individual’s
genomic information, but rather creates a unique and irreversible hash based on user’s genomic
profile. Such an ID system will not reveal any personal information or genomic data about the
individual but provides unique and secure primitives for accessing various applications on the
platform. Lavita Genetic ID system will enable a multi-tier user experience (based on user data
contributions), giving users exclusive access to digital assets on Lavita platform and unlock other
benefits.

Recently, some hospitals have started using DNA forensics, i.e., using short tandem repeats (STR)
to identify patients [45]. Similarly, Lavita platform will allow users to encrypt STR information to
generate hash as unique ID values. Genetic identity is stable with the usage of each individual’s in-
herent information, and cannot be duplicated or reverse-engineered. Such features make encrypted
genetic identity a suitable choice in secure ID systems.

4.2 Clinical Trial Matching

Considering that the average cost of developing and bringing a novel pharmaceutical agent to
market comes in around $2.6 billion, and the time invested into a single project can be up to
12 years in total, pharmaceutical companies are increasingly looking for ways to lower costs and
maximize returns on their investments.

Now, with a request of the patient query on Lavita secure data marketplace will bring companies
a cohort of patients who are the targeted clinical trial participants. Lavita addresses the security
and regulatory concerns of both the patients and the medical organizations during the processes
of therapeutic intervention and pharmacogenetic clinical trials; the blockchain-enabled Lavita plat-
form is able to reconnect patients and only disclose their data to the company with their complete
consent.

Entering virtual clinical trials [46], where participants are not required to travel to a clinical center
or doctor’s office for frequent recurring inspection, will also be big news for patients, especially
those who are suffering from chronic diseases. Lavita blockchain-enabled virtual clinical trials can
be a new method of collecting safety and efficacy data from participants.
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4.3 Secure Genomic Comparison

This genomic application provides an intuitive and secure app to compare individuals based on their
genomic profiles, and in future version based on their health profile as well. The app, partially de-
veloped in collaboration with Lavita advisors [47], calculates the similarity of genomics sequences
using Hamming distance measure [48] and shows the distribution of phenotypes of similar individ-
uals given the input genomic sequence of the user. The app utilizes publicly available datasets such
as Personal Genome Project [49] to amass individuals’ profiles along with their genome data, med-
ical conditions, and treatment. Secure Genomic Comparison app will assist biomedical researchers
to conduct statistical studies on the human genome, as well as individuals to learn about their own
genetics and health. By analyzing your genome data and comparing it to various databases, users
can see how certain diseases are common among patients with the most similar genomes to theirs.

In the first version of the Secure Genomic Comparison app, the numbers next to a disease refer to
the occurrence of each disease among those people in the database with a similar genomic profile
to the user. This information can help you gain a better understanding of a genome profile and
its implication for phenotypic traits and health risks. In future versions of the app, the users will
be able to choose among different genomic distance measurements besides Hamming distance to
quantify the similarity of their genomes to the database. In addition, the users will be able to use
health data (i.e., phenotypic data) and genomic variant information to find exact matches among
individual profiles in the database.

4.4 Ancestry Profiling

Companies including 23andMe and Ancestry.com have popularized Direct-to-Consumer (DTC) ge-
nomic profiling in the last two decades. With the rapid decrease in the cost of genomic sequencing,
more people have been able to gain access to sequencing technology through DTC companies and
learn from their genomic profile. One of the most common applications popularized by DTC ge-
nomic companies is ancestry profiling which provides valuable insights to individuals to understand
historical traits and ancestral roots based on their genome. Genetic ancestry is a measure of in-
dividuals’ biogeographical origins, based on correlated allele frequency differences among ancestral
source populations. Knowing genetic ancestry can provide useful insights about the geographic ori-
gins of individuals’ ancestors and even aid in the assessment of risk for some heritable conditions.

In this application, by leveraging genome-wide genetic variant data, including whole-genome se-
quences, whole exome sequences, and whole-genome genotypes, we analyze users’ raw genome data
reports (e.g., raw reports obtained from 23andMe or other genomic databases) and determine their
genetic ancestry categories. In particular, by leveraging our bioinformatic and machine learning
tools and pipelines, we find and visualize the fractional estimates of ancestry components for ge-
nomic samples of users in a secure environment. In future versions of the app, the users will be
able to obtain more granular geographic information about their ancestral relatives and be able to
opt-in to securely connect with other individuals with similar ancestral profiles.
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5 New Business Opportunities

5.1 Pharmacy Benefit Management (PBM)

Pharmacies participating in the Lavita ecosystem can continue to increase the precision applied to
their policies and clinical programs based on what the most recent pharmacology research offers.
Pharmacy companies are able to improve drug traceability, simplify the process of interaction
between parties in the supply chain, and even alert labs and pharmacy outlets if fake drugs have
been detected [50].

5.2 On-chain Medical Insurance and Medical Care

Let’s take a look at an individual who purchases health insurance. The details of his/her policy
get linked to the corresponding profile within the blockchain. When a patient undergoes a medical
procedure covered by his/her policy, a smart contract will automatically be triggered and the
correct payment from the insurance company to the hospital will be made [51]. This will have a
positive impact on the fair execution of a person’s insurance policy. It will reduce the inefficiencies
to complete insurance claims forms. On the other hand, a company can retrieve data and make
sure the documents are not fraudulent.

6 LAVITA Token Metrics

LAVITA tokens will have a fixed supply of 8,000,000,000 (8 billion) tokens with a tentative launch
of May 10, 2023, subject to change. The token allocation will be as follows:

Tokens for contributing to Lavita platform
25% - Rewards for Data Contributors on Lavita platform (4-year period)
15% - Rewards for LAVITA Staking and Decentralized Governance (4-year period)

Tokens for Theta ecosystem partners
20% - Rewards for Theta Edge Nodes providing Computation and Storage (4-year pe-
riod)
5% - Rewards for THETA Validators and Guardians (12-month vesting, 1/4th per quar-
ter)

Tokens for Lavita team/marketing & private sale
15% - Rewards for R&D and Core team (4-year vesting, 1/4th per year)
15% - Reserve for marketing, partners, advisors (not vested)
5% - Private Token Sale (12-month vesting, 1/4th per quarter)

The expected amount of LAVITA in circulation is shown in the following graph and detailed in the
table below(# of tokens in Millions).

Rewards for Data Contributors: A total of 2 Billion LAVITA (25% of supply) is allocated
over a 4-year period for data contributors who provide their genomic-health data on the Lavita

19



Privacy-Preserving Health and Genomics Data Marketplace Powered by AI and Blockchain

End of Yr 1 End of Yr 2 End of Yr 3 End of Yr 4
% Total 5/10/2023 8/10/2023 11/10/2023 2/10/2024 5/10/2024 5/10/2025 5/10/2026 5/10/2027

Rewards for Data Contributors on Lavita platform (4-year period) 25% 2,000 0 125 250 375 500 1,000 1,500 2,000

Rewards for LAVITA Staking & Decentralized Governance (4-year period) 15% 1,200 0 75 150 225 300 600 900 1,200

Rewards for Theta Edge Nodes providing Computation and Storage (4-year period) 20% 1,600 0 100 200 300 400 800 1,200 1,600

Rewards for THETA Validators and Guardians (12-month vesting) 5% 400 0 100 200 300 400 400 400 400

Rewards for R&D and Core team (4 year vesting, 1/4th per year) 15% 1,200 0 0 0 0 300 600 900 1,200

Reserve for marketing, partners, advisors (Not vested) 15% 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200

Private Token Sale (12-month vesting, 1/4th per quarter) 5% 400 0 100 200 300 400 400 400 400

Total Circulating 100% 8,000 1,200 1,700 2,200 2,700 3,500 5,000 6,500 8,000

Assume 50% circ staked (APY %) 50.00% 35.29% 27.27% 22.22% 17.14% 12.00% 9.23% 7.50%

Amount of tokens staked (est 50%) 600 850 1100 1350 1750 2500 3250 4000

Token Allocations (# of tokens in Millions)
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LAVITA Token Supply Release Schedule

Rewards for Data Contributors on Lavita Platform

Rewards for LAVITA Staking & Decentralized Governance

Rewards for Theta Edge Nodes providing Computation and Storage

Rewards for THETA Validators and Guardians

Rewards for R&D and Core team

Reserve for marketing, partners, advisors

Private Token Sale

marketplace. The “fair market pricing” algorithm and AI-supported data validation tool will
identify the value of data and the amount of tokens to be distributed fairly.

Rewards for LAVITA Staking & Decentralized Governance: A total of 1.2 Billion LAVITA
(15% of supply) is allocated over a 4-year period as rewards for staking LAVITA, which also allows
users to participate in the decentralized governance of the network. Each year, 300 Million LAVITA
will be distributed proportionally to all LAVITA stakers.

Rewards for Theta Edge Nodes providing Computation and Storage: For edge nodes
supporting Lavita computation and storage, a total of 1.6 Billion LAVITA (20% of supply) is
allocated over a 4-year period.

Rewards for THETA validators and guardians: On or around August 15, 2023, 100 Mil-
lion LAVITA (or 1

4 of the allocated 400 Million) will be distributed proportionally to all THETA
validator and guardian stakers. An average amount of THETA staked between May 10, 2023 and
July 31, 2023 will be used for reward computation. For example, if a guardian stakes an average
100,000 THETA during the period, then they will receive 100,000 / total ave THETA staked x 100
Million LAVITA.

Thereafter, 100 Million LAVITA (or 1
4 of the allocated 400 Million LAVITA) will be distributed

proportionally to stakers each quarter through May 10, 2024.

Rewards for R&D and Core team: A total of 1.2 Billion LAVITA (15% of total supply) is
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allocated to R&D and core team to incentivise continued development of the platform. On May
10, 2024, 300 Million LAVITA will become vested and distributed to the team and 300 Million
LAVITA each year thereafter through May 10, 2027.

Reserve for marketing, partners, advisors: A total of 1.2 Billion LAVITA (15% of total
supply) is reserved for marketing purposes, advisors, partners and other strategic development
purposes. These tokens are not vested.

Private Token Sale: A total of 400 Million LAVITA (5% of total supply) is allocated for private
sale. If all 400 Million tokens are sold prior to May 10, 2023 then on August 10, 2023, 100 Million
LAVITA will become vested, and 100 Million LAVITA will be distributed each quarter thereafter
through May 10, 2024.

7 Conclusion

The long-term vision for the Lavita genomic and healthcare data marketplace is to create an
environment for users to actively participate and be rewarded with LAVITA tokens for sharing
their health data and offering storage and computation capabilities on the Theta Edge Network.
In the end, we hope to create a new global community for customer adoption and accelerate the
growth of the Lavita ecosystem.

In addition to the incentive mechanism, users will be provided with AI-supported personalized clin-
ical advice and health data analysis. This drives further engagement within the Lavita platform
and increased usage among patients for clinical guidelines. With the recent advances in conversa-
tional and generative AI technologies and distributed ledger and blockchain technologies, Lavita
aims to revolutionize biomedical discoveries leading to novel, more effective healthcare diagnostic
and therapeutic tools.

The next phase in Lavita’s development will be to create new business opportunities in the following
areas:

1. Clinical Patient Matching including possibly virtual clinical trials that could lead to significant
cost and time savings for pharmaceutical companies to invest in developing novel drugs and
treatments,

2. Pharmacy Benefit Management systems to improve drug quality and traceability, and

3. On-chain Medical Insurance programs leveraging smart contracts to automatically process
claims and payments.
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Appendix

A Compliance with National and State Laws

Individual’s health information privacy is a ubiquitous problem around the world. Activities involv-
ing health information face significant challenges, risks, as well as regulations related to individual’s
privacy.

In the United States, Health Insurance Portability and Accountability Act (HIPAA) [52] regulated
how covered entities (e.g., healthcare organizations and their business associates) handle protected
health information (PHI). More specifically, the HIPAA privacy rule provides two mechanisms (i.e.,
safe harbor and expert determination) to de-identify PHI for secondary use. Both methods are based
on the consensus that there is “no reasonable basis” for believing that the processed data can be used
to re-identify individuals. The former mechanism explicitly defines 18 identifiers to be removed from
the data, while the latter mechanism relies on an expert to certify the risk of re-identification. For
genetic information, the Genetic Information Nondiscrimination Act (GINA) [53] prevents genetic
discrimination in health insurance and in an employment decision, but with the lack of protection
against life insurance, disability insurance, or long-term care insurance-related discriminations.
Although GINA provides anti-discrimination protection, it is still lacking comprehensive privacy
protections of genetic information. As GINA clarified that genetic information is health information
in 2013, the HIPAA privacy rule was revised to cover the protection of genetic information [54].
But, the use or disclosure of de-identified PHI is not restricted under HIPAA. At the state level,
different U.S. states may have different medical or genetic privacy-related laws. For example, some
state laws protect against the improper collection of genetic material without consent [55]. As
another example, California’s Confidentiality of Medical Information Act (CMIA) even provides
stronger privacy protections for medical information than HIPAA, where the definition of providers
of healthcare under CMIA (i.e., any business that designed to maintain medical information) is
much broader than that of covered entities under HIPAA. In 2018, California Consumer Privacy
Act (CCPA) is passed to provide residents full control over their personal information, such as what
information will be collected for which purpose and with whom to be shared. CCPA is pioneering
consumer privacy protection in California, which will be a blueprint for other states. CCPA also
allows consumers to opt out from having their data sold (but not for “sharing” purposes) by a
company, but the company also reserves the right to charge a higher price of services for these
consumers [56]. In addition, to ensure the confidentiality and integrity of health information,
the HIPAA security rule provides national standards for handling (e.g., storage, transferring, use)
health information within covered entities. The research use of health information with human
subjects is also regulated by the US Department of Health and Human Services Common Rule,
which includes three key elements i.e., requirements of assuring compliance by research institutions,
obtaining individual’s informed consent, and Institutional Review Board (IRB) approvals.

In China, under the regulation of ”Cyber Security Law of the People’s Republic of China” [57] in
2017, personal information without proper de-identification or data contributors’ consent cannot be
shared with any third party by any network providers. The cyber security law defines a ‘network’
as “any system that consists of computers or other information terminals, and related equipment
for collecting, storing, transmitting, exchanging and processing information” [58].

In addition, the Chinese government released a new regulation named ”Information Security Tech-
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nology and Personal Information Security Specification” (referred as “Specification”) [59] in 2017.
Several security requirements have been provided under this Specification for handling personal data
during the data collection, storage, processing, transferring and disclosure phases. The Specifica-
tion also defines a few exceptions (e.g., for public safety, public health, major public interests, legal
rights, etc.) in which explicit consent from individuals may not be required for sharing sensitive
personal information.

In Europe, the Data Protection Directive has been designed to protect personal data privacy as
national law by the 27 European Union members since 1995. On May 25, 2018, it was replaced by
the General Data Protection Regulation (GDPR). GDPR extended the definition of personal data
to reflect changes in technology. Under GDPR, any information that could be used to identify an
individual (either on its own or by linking with other external information) is defined as personal
data. For example, the collection of users’ browser history or purchase history (defined as personal
data under GDPR) requires explicit consent from users. GDPR also offers EU residents better
control over how their data is used [60]. Processing different types of personal data requires explicit
“opt-in” informed consent. Moreover, EU residents have the right to access their personal data
from data controllers along with additional information (e.g., how, where, and for what purpose
their data is being used) without charge. EU residents can also request their data to be removed
from a database or any further use.

Worldwide, Personal Information Protection and Electronic Documents Act (PIPEDA) is the Cana-
dian law for data privacy. South Korea and Japan, both have their own versions of the Personal
Information Protection Act (PIPA) and a more complete list of international privacy-related laws
by regions can be found at [61].
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